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Abstract

In this thesis, we study application of game theory to microarray analysis. We focus on
models consisting of weighted voting games, which are defined by an assignment of a weight
to each player and a quota, which is the minimal total weight required for a vote to pass.

A power index estimates the influence of a player in the game. We present new algorithms
computing two of the most popular power indices in weighted voting games: the Shapley-
Shubik power index and the Banzhaf index. We show that under assumption of logarithmic
cost per arithmetic operation, our algorithm for computing the Shapley-Shubik power index
is asymptotically faster than previously published methods. We also argue that this model
of computation is necessary to accurately measure complexity of our algorithms, as well as
those previously published.

In the second part of the thesis, we construct weighted voting games based on results
of microarray experiments and use power indices to identify differentially expressed genes.
Based on this identification, we construct predictive models and show their success on real
world data.
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Abstrakt

V této práce studujeme aplikaci herní teorie pro analýzu experimentů s DNA čipy. Za-
měřujeme se na modely založené na hlasovacích hrách, které jsou definované přiřazením
váhy každému hráči a kvótou, jež představuje minimální váhu, pro níž je výsledek hlasování
pozitivní.

Takzvaný power index odhaduje vliv hráče v dané hře. Představujeme nové algorithmy
pro výpočet dvou z nejpopulárnějších power indexů: Shapley-Shubik power index a Banzhaf
index. Ukazujeme, že při předpokladu logaritmické ceny pro aritmetickou operaci, náš al-
goritmus pro výpočet Shapley-Shubik power indexu je asymptoticky rychlejší než jiné, dřívě
publikované metody. Dále předkládame argument pro nutnonost tohoto výpočetního modelu
pro přesné určení složitosti jak našich algoritmů, tak již dříve představených algoritmů.

V druhé části práce konstruujeme hlasovací hry na základě výsledů experimentů s DNA
čipy a používáme power indexy pro nalezení genů s rozdílnou expresí. Na základě těchto
nálezů sestavíme prediktivní modely a ukážeme jejich úspěšnost na reálných datech.
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Chapter 1

Introduction

In this thesis, we contribute to the two following fields: game theory and analysis of gene
expression data. In the first part of the thesis, we limit our focus to game theory. In the
second part, we use our theoretical results and apply them to derive useful information out
of gene expression data on specific samples.

1.1 Game theory

First, we wish to introduce the reader to the basics of game theory. Game theory is in
the most general terms a mathematical study of interaction between multiple selfish agents.
It finds its application, among others, in economy, social sciences, biology and computer
science. Some situations modeled by game theory may be characterized by conflict, for
example agents must compete for a limited shared resource. Such a situation may be for
example a political campaign (the resource being the votes of the citizens) or a game of chess
(the resource being the victory of the game).

Other situations may drive the agents to cooperate, for example pooling their resources
to achieve a greater goal. Such situations arise naturally, for example investors are often
incentivized to pool their money instead of each investing individually.

There are two significant classes of games which capture these situations, non-cooperative
games and cooperative (also called coalitional) games. In both cases, we assume that the
agents act rationally and in their best self-interest.

Under these assumptions and given a precise definition of the game that the agents
are playing, we may derive interesting information related to the given game. For non-
cooperative games, we are often interested in finding equilibria, which may be intuitively
understood as a collective behaviour of all agents, which all individually consider in some
sense optimal. One may therefore assume that given enough time, agents will naturally
converge their behaviour to such an equilibrium.

In cooperative games, we are also interested in finding coalitions of agents such that no
agent would want to leave the coalition. Another topic of interest specific to cooperative
games is finding a way to divide the shared profit, such that every player agrees.

Game theory is a vast field of mathematics and surveying all of it is a daunting task. To
keep the scope of the thesis reasonable, we focus more deeply on a specific class of coalitional
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CHAPTER 1. INTRODUCTION

games. Namely, we will focus on voting games which provide a model with many practical
applications.

1.2 Microarray analysis

The other topic to which we wish to introduce the reader is the analysis of gene expression
data. Techniques of measuring gene expression are a powerful tool used by various life
sciences. Such techniques allow us to gain an insight into the inner working of cells, which
may be selected based on their species, behaviour or they may be artificially subjected to
certain conditions. The following overview is based on Debnath, Prasad and Bisen [1].

There are various techniques which seek to estimate a degree to which a given gene is
expressed in a cell. Among such techniques is microarray analysis, also called gene chip
analysis. The idea is that a degree to which a gene is expressed can be estimated by the
amount of RNA transcripts of the gene. A big advantage of this approach is that we may
perform the analysis for a huge number of genes simultaneously. While RNA transcription is
often only an intermediate step in synthesising a protein (or inducing some other reaction),
measuring its frequency nevertheless provides a strong insight into the underlying biological
processes.

We will briefly and informally describe the process of measuring gene expression using
microarrays. A DNA microarray consists of a flat surface to which is attached a collection
of short DNA strands. The precise position of each DNA strand is known in advance. One
microarray can contain millions of these strands.

Usually, a control sample and a different (for example diseased) sample is measured at
the same time. First we collect mRNA molecules from both samples. After this is done,
the mRNA molecules are converted into their complementary DNA (cDNA). This is done
because only the DNA molecules can bind to their complementary strands on the microarray.
Every DNA strand is marked with a fluorescent probe, whose color depends on the original
sample. After that, the sample strands are mixed and allowed to bind on the microarray.

After the mixing, each sample strand will with high probability attach to the comple-
mentary strand on the microarray. We can then look at a given spot on the microarray
with a known DNA strand and see (approximately) how many control and diseased strands
have binded to that spot. This estimates the number of mRNA transcripts with the given
sequence. Furthermore, we find out the number of transcripts for both the control and
diseased sample at the same time. The resulting data usually contains noise and requires
further computer processing.

While microarrays are still widely used [2, 3], other techniques for measuring the levels
of RNA transcriptions were recently developed, such as RNA-Seq [4]. As for our results, the
development of new techniques presents no significant obstacles. We are interested only in
the estimate of the level of expression of each gene and use this estimate to construct further
models.

We base our models on those described by Moretti et al. [5]. In their work, they construct
a class of coalitional games called microarray games. Various authors [6, 7, 8] have since
extensively studied statistical and game theoretical properties of microarray games and their
relevance to gene expression data.

2



1.3. ORIGINAL RESULTS OF THE THESIS

The idea of microarray games is to consider every gene as a player and a specific condition
(such as for example cancer) as a result of a coalition of players. The requirements on such
a coalition are derived from results of a gene expression analysis. The next step is to use
established techniques of game theory to estimate the importance of each player. This would
reflect the importance of each gene in inducing the given condition.

1.3 Original results of the thesis

In Section 3.7 we present a new algorithm for computing the Shapley value of all players.
We show that under a more exact model of computation, this algorithm achieves better
asymptotic time complexity than previously described methods.

The previously described methods had their time complexity proven under the assump-
tion that any arithmetic operation takes constant time. In Section 3.5 we present new lower
bounds on time complexity of those algorithms when assuming logarithmic cost of arithmetic
operations.

In Section 4.1.3, we show that finding strong coalitions of bounded size is NP-Hard and
even W[1]-hard.

We also describe a new class of coalitional games in Section 4.2 and empirically test their
viability as a tool for analyzing results of microarray experiments in Sections 5.5 and 5.6.

Furthermore, we provide an R package for efficient computation of power indices of
weighted voting games. The package is described and its performance is measured in Sec-
tion 5.1. The measurements show that our algorithm for computing the Shapely value in
integer weighted voting games has better performance in practice then the previously fastest
existing implementation.

1.4 Outline of the thesis

In Chapter 2 we provide introduction into coalitional games and established measures of
importance of players. We focus on Shapley value and Banzhaf index, which are among the
most popular measures of player influence.

In Chapter 3, we focus solely on weighted voting games, which are an extensively studied
subclass of coalitional games. We describe a new technique of computing Banzhaf index
and Shapley value in integer weighted voting games. This results in an algorithm for com-
puting the Shapley value of all players in a given integer weighted voting game, which is
asymptotically faster than other previously described methods.

Subsequently, in Chapter 4, we describe a class of coalitional games which we call additive
voting games and show that it is a possible generalization of microarray games described by
Moretti et al [5]. We also show how those games can model the situations in which gene
expression can indicate a certain condition.

In Chapter 5, we show the performance of our models on real world data and compare
them with other methods. We also provide notes on the implementation of the included R
package and measure its performance.

3



CHAPTER 1. INTRODUCTION
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Chapter 2

Introduction to coalitional games

In this chapter, we will provide necessary definitions, show practical examples and also
show some of the important results regarding coalitional games. A coalitional game is defined
by its set of players (agents) and a function, which assigns to every coalition its collective
profit.

Definition 1. A coalitional game in characteristic function form is a pair (N, v) where N
is the finite set of players and v : 2N → R+

0 such that v(∅) = 0 is the characteristic function
of the game.

The value given by v(S) is understood as the maximum possible profit that the players
in S can gain, no matter what the rest of the players in N \ S do. We also assume that the
profit is freely transferable among the players.

We will only consider coalitional games in characteristic function form and will simply
call them coalitional games from now on. A subset of players is in this context called a
coalition. Furthermore, the coalition consisting of all players is called the grand coalition.
The following example demonstrates a simple coalitional game.

Example 2. Consider the following situation. Person A, B and C have independently come
up with the idea to start a taxi service. Person A is a fast driver and can be expected to
earn $50 a day in his job as a taxi driver. Person B is an average driver and is expected to
earn $30 a day by themselves. While person C has no practical skills, they hold a great deal
of investment capital. The economy is unfortunately tough and his current investment plan
is expected to earn a profit of $10 a day.

One possible alternative is to join the efforts of the individual people. For example,
person A and C can start together a luxury taxi service and with the greater charge earn
$60 a day. Doing the same with person B would earn both B and C a total of $40 a day. On
the other hand, person A and B together might at best spread a good word about each other
and earn a total of $85. All three people together might be able to start an international
bus service and earn a staggering amount of $200 a day.

A coalitional game describing this situation is given as (N = {A,B,C}, v) with the
values of v being v(∅) = 0, v(A) = 50, v(B) = 30, v(C) = 10, v({A,B}) = 85, v({A,C}) =
60, v({B,C}) = 40, v({A,B,C}) = 200.

5



CHAPTER 2. INTRODUCTION TO COALITIONAL GAMES

Naturally, one might wonder how each person would behave and what fraction of the
profit they would demand for themselves. For example, it is clear that no rational, selfish
person would agree to join a coalition, unless they were to gain at least as much as they
would earn by themselves.

It is a fundamental assumption that every player is rational in the sense that they seek to
maximize their own profit. Under these assumptions, we can now try to predict the behaviour
of the players. Namely, we can study which division of the profit between individual players
they would find acceptable. Of course, the suitability of various ways to divide the profit
depends on properties of the game. A common assumption is that it is always beneficial (or
not harmful) for players to join their coalitions.

Definition 3. We say that a coalitional game (N, v) is superadditive if for every two S, T ⊆ N
such that S ∩ T = ∅ holds

v(S ∪ T ) ≥ v(S) + v(T )

This property is often assumed because it allows us to assume that the grand coalition
will form. The game described in Example 2 is superadditive.

2.1 Solution concepts

First we show a formal definition of the notion of dividing the profit given a specific
game.

Definition 4. A payoff vector for a game (N, v) is a vector x ∈ RN such that xi is the share
of the collective profit that is given to the player i ∈ N .

We assume that the given games are superadditive and therefore the payoff vector con-
siders all the players. Usually we want the payoff vector to fulfill some set of properties
which we find desirable. Which properties to choose is not obvious and many different ways
to divide the profit have been proposed.

A solution concept is a certain set of rules for dividing the profit. Therefore, a solution
concept defines for each game a set of payoff vectors. Many different solution concepts
have been proposed based on different assumptions about the behaviour of the players or
fairness of the rules. We present some of the most commonly required properties for solution
concepts.

Property 1 (Efficiency). Every payoff vector x ∈ RN given by the solution concept splits
all of the profit among the players. That is for every coalition S ⊆ N∑

i∈S
xi = v(S)

Property 2 (Individual rationality). Necessary given the assumptions that each player is
selfish and rational. The property is satisfied if the profit is distributed in such a way that
each player does not earn less by joining the grand coalition than by being on their own.
That is

xi ≥ v({i})
for each player i ∈ N .

6



2.1. SOLUTION CONCEPTS

Property 3 (Coalitional rationality). No coalition will earn less by joining the grand coali-
tion than by being on their own. Therefore it holds∑

i∈S
xi ≥ v(S)

for every coalition S ⊆ N . Note that this implies Property 2.

2.1.1 The core

Using these properties, we can define the solution concept known as the core. It has been
introduced by Gillies [9] and has been extensively studied since.

Definition 5. The core of a coalitional game (N, v) is the set of all payoff vectors x ∈ RN

which satisfy Properties 1 and 3. It holds that no coalition is given less profit in any x than
it would earn by itself.

It can also be said that the core contains all payoff vectors that selfish and rational players
will find acceptable. Note that the core may be empty in some cases. Consider the following
situation.

Example 6. Three robbers are about to steal a golden bar. No single robber can carry the
bar by himself but any pair is able to carry it. The profit of the coalition is therefore given
by

v(S) =

{
1 if |S| ≥ 2

0 otherwise

Each payoff vector x = (x1, x2, x3) falls into one of two cases: either every player is given
more than 0, in which case two of them can form a coalition without the third. In the other
case, one of the players is given 0, in which case he may approach the other player with
the lesser allocated profit and offer him a coalition, which is advantageous to both of them.
Therefore, the core contains no payoff vector and is empty.

The fact that the core may be empty leads us to consider a different choice of properties.

2.1.2 Shapley value

Shapley value was introduced by Lloyd Shapley [10]. It is one of the most significant
solution concepts and has been awarded by a Nobel Prize in Economics in 2012 [11]. It is
given by the following definition.

Definition 7. The Shapley value of player i in a game (N, v) is given by

φi(v) =
∑

S⊆N\{i}

|S|! (n− |S| − 1)!

n!
(v(S ∪ {i})− v(S))

7
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Note that φ(v) is also a payoff vector. The Shapley value can be understood as the
expected profit that the player i adds at the moment of their entering the coalition, given
that the players enter the coalition one by one and every ordering of the players has the
same probability.

For example the players in Example 2 have Shapley values φA(v) = 87.5, φB(v) = 67.5
and φC(v) = 45.

One of the most remarkable properties of the Shapley value is that it is the only solu-
tion concept which satisfies Property 1 (Efficiency) along with the three properties given
below [12].

Let x(v) ∈ RN be the assignment of values to each player according to a given solution
concept and for a given game (N, v).

Property 4 (Null player). We say that a player is null if they have no effect in any coalition.
Formally, a player i is null if for every S ⊆ N \ {i} it holds v(S) = v(S ∪ {i}). The property
is satisfied if every null player i has always xi(v) = 0.

Property 5 (Symmetry). The property is satisfied if for every two players i, j ∈ N with
v(S ∪ {i}) = v(S ∪ {j}) for every S ⊆ N \ {i, j} it holds xi(v) = xj(v). This means that if
any two players are equivalent for every coalition, then they get assigned the same value.

Property 6 (Linearity). For a sum of games, the value assigned to each player is the sum
of values in the individual games. That is, for every i ∈ N

xi(v + w) = xi(v) + xi(w)

Moreover for any α ∈ R it holds
xi(αv) = αxi(v)

Theorem 8 (Shapley [12]). The Shapley value is the only solution concept which satisfies
Properties 1 (Efficiency), 4 (Null player), 5 (Symmetry) and 6 (Linearity).

We will show only the easier part of a proof of this theorem. We only show that the
properties hold for the Shapley value. We refer the interested reader to the cited literature
for the proof that this set of properties defines the Shapley value uniquely.

To make the notation shorter, we set

p(S) =
|S|! (n− |S| − 1)!

n!

for S ⊆ N .

Lemma 9. Shapley value satisfies Property 4 (Null player)

Proof. Suppose that i is a null player and thus for every S ⊆ N\{i} it holds v(S) = v(S∪{i}).
Then by Definition 7 it holds

φi(v) =
∑

S⊆N\{i}

p(S)(v(S ∪ {i})− v(S)) =
∑

S⊆N\{i}

p(S) · 0 = 0

8
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Lemma 10. Shapley value satisfies Property 5 (Symmetry)

Proof. Suppose that for some i, j ∈ N and every S ⊆ N\{i, j} it holds v(S∪{i}) = v(S∪{j}).
Consider the definition of the Shapley value.

φi(v) =
∑

S⊆N\{i}

p(S)(v(S ∪ {i})− v(S)) =

=
∑

S⊆N\{i,j}

p(S)(v(S ∪ {i})− v(S)) +

+
∑

S⊆N\{i},j∈S

p(S)(v((S \ {j}) ∪ {i, j})− v((S \ {j}) ∪ {j})) =

=
∑

S⊆N\{i,j}

p(S)(v(S ∪ {j})− v(S))+

+
∑

S⊆N\{j},i∈S

p(S)(v((S \ {i}) ∪ {i, j})− v((S \ {i}) ∪ {i})) =

=
∑

S⊆N\{j}

p(S)(v(S ∪ {j})− v(S)) = φj(v)

Lemma 11. Shapley value satisfies Property 6 (Linearity)

Proof. Let (N, v) and (N, v′) be coalitional games. Let u(S) = v(S)+v′(S) for every S ⊆ N .
We will show that φi(u) = φi(v) + φi(v

′) for every S ⊆ N .

φi(v) + φi(v
′) =

∑
S⊆N\{i}

p(S)(v(S ∪ {i})− v(S)) +
∑

S⊆N\{i}

p(S)(v′(S ∪ {i})− v′(S)) =

=
∑

S⊆N\{i}

p(S)(v(S∪{i})+v′(S∪{i})−v(S)−v′(S)) +
∑

S⊆N\{i}

p(S)(u(S∪{i})−u(S)) = φi(u)

Similarly for multiplication by a constant α ∈ R. Let u(S) = αv(S) for every S ⊆ N .

φi(u) =
∑

S⊆N\{i}

p(S)(αv(S ∪ {i})− αv(S)) = α
∑

S⊆N\{i}

p(S)(v(S ∪ {i})− v(S)) = αφi(v)

Lemma 12. Shapley value satisfies Property 1 (Efficiency)

Proof. We will show that ∑
i∈N

φi = v(N)

By definition of the Shapley value we get∑
i∈N

φi =
∑
i∈N

∑
S⊆N\{i}

p(S)(v(S ∪ {i})− v(S))

9
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We will count how many times the terms v(S ∪ {i}) and −v(S) appear in the sum. Every
subset of N except the empty set is added as the v(S ∪ {i}) term for each of the players in
S ∪{i}. Similarly the term v(S) is subtracted for every proper subset of N and every player
not in S. From this observation, we get∑

i∈N
φi =

∑
S⊆N,S 6=∅

|S|(|S| − 1)! (n− |S|)
n!

v(S)−
∑
S(N

(n− |S|) |S|! (n− |S| − 1)

n!
v(S) =

=
∑

S(N,S 6=∅

(|S|)! (n− |S|)
n!

v(S)− |S|! (n− |S|)
n!

v(S) +
n! 0!

n!
v(N)− 0! n!

n!
v(∅) =

= v(N)− v(∅) = v(N)

Recall that by the Definition 1 of a coalitional game, it holds v(∅) = 0.

The difficulty of computing the Shapley value strongly depends on the structure of the
cooperative game. Computing it from definition requires the summation of an exponential
number of addends, therefore in practice, the Shapley value is often approximated or the
game is restricted in such a way, that the computation is more tractable.

2.2 Voting games

Weighted voting games are an intensively studied class of coalitional games. A given
game is defined by a quota and by an assignment of a weight to each player. The coalition
has value 1 if the total weight of the coalition is at least the quota. Otherwise it is zero.
Formal definition is as follows.

Definition 13. A coalitional game (N = {1, 2, . . . , n}, v) is a weighted voting game if there
exists (q;w1, w2, . . . , wn) such that for the characteristic function v holds

v(S) =

{
1 if

∑
i∈S wi ≥ q

0 otherwise

where q ∈ R+ the quota of the game wi ∈ R+ is the weight of the player i.
If q, w1, w2, . . . , wn ∈ N we say that the game is an integer weighted voting game.

The quota and assignment of weights to players uniquely defines the weighted voting
game, therefore we will use the notation (q;w1, w2, . . . , wn) to denote a given weighted voting
game.

We are often interested in finding the power that a given player has over the outcome of
the game. For example in a parliament, it is interesting to see how much a given political
party can influence the outcome of a vote. As shown in the following section, the fraction of
seats in the parliament that the party holds is often not equal to this influence. The following
section also presents formal tools to study the influence of a player in a given game.

10
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2.3 Power indices

The influence that a player has over the game is often measured as a real value called the
player’s power index. Formally, the definition is the same as that of the payoff vector, that
is the power indices of all players are a real valued vector with exactly one value assigned to
each player.

The main difference is in the context in which it is used and its desired properties. For
example the property of Efficiency (Property 1) is no longer a requirement. We present some
of the most well known power indices in Sections 2.3.1 and 2.3.2 and show their applications
on real world examples in Examples 14 and 15.

2.3.1 Shapley-Shubik power index

The Shapley-Shubik was introduced by Shapley and Shubik [13] as a measure of power
in weighted voting games. It is simply the application of the Shapley value to voting games.

It considers the following interpretation of the Shapley value. For a player i ∈ N and
some fixed ordering of players, we say that i is pivotal if a coalition induced by all players
before i has value 0 but the coalition consisting of players before i and including i has value
1.

Imagine a situation in which the players come into the coalition one by one. Then
the player is pivotal if by his entering, he will change the value of the coalition. Then by
considering the definition of the Shapley value, we can see that it is the probability that a
player is pivotal, given that all orderings have the same probability.

2.3.2 Banzhaf index

The Banzhaf index was originally introduced by Lionel Penrose [14] and later reinvented
by John F. Banzhaf III [15] as a measure of power in weighted voting games. The index
introduced by Banzhaf is now called the normalized Banzhaf index. The power of each player
is considered proportional to the total number of different swings that each player can do.
We say that a player i swings the outcome of a coalition if they change its value from 0 to
1 by entering it. The idea is similar to the one of a pivotal player in the Shapley-Shubik
power index but here, we imagine that all the players enter the coalition at once and we do
not consider their order of entering.

The number of swings of player i in a given game can be seen to be equal to

θi =
∑

S⊆N\{i}

v(S ∪ {i})− v(S)

Then the normalized Banzhaf index of player i is given as

β̄i(v) =
θi∑

j∈N θj

Alternatively the (non-normalized) Banzhaf index is given as

βi(v) =
θi

2n−1

11
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The main difference in interpretation is that the normalized Banzhaf index considers the
fraction of all swings, while the Banzhaf index considers the fraction out of all coalitions
without i.

The Banzhaf index can be derived axiomatically much like the Shapley value. Grabisch
and Roubens [16] show that Banzhaf index is the only power index which has Properties 6
(Linearity), 4 (Null player), 5 (Symmetry) along with Property 7 (2-Efficiency) which is
defined as follows.

Property 7 (2-Efficiency). Let x(v) ∈ RN be a payoff vector assigned to the game (N, v)
by the given solution concept. For any pair of i, j ∈ N , we first construct the game in which
we “merge” the players i and j. Therefore we get a game (N ′, v′) where

N ′ = (N \ {i, j}) ∪ {ij}

and for every S ⊆ N \ {i, j} we define v′ so that

v′(S) = v(S)

and
v′(S ∪ {ij}) = v(S ∪ {i, j})

.
The property is satisfied if xi(v) + xj(v) = xij(v

′) for every pair i, j ∈ N .

2.4 Examples

We use the European parliament and the Chamber of Deputies of the Czech Republic as
examples of real life voting situations. To compute the power indices, we use our implemen-
tation. The algorithms for computing the power indices are described in Chapter 3 while
the implementation of those algorithms is described in Chapter 5.

Example 14. We will use the European parliament as an example. We will consider each
political party as a player. Then the weight of the player is set as the number of seats that
the party holds in the parliament. Members of parliament not affiliated with any party will
be assigned their own player. For important decisions to pass, the absolute majority of votes
is required. The parliament consists of 705 seats, therefore the quota is set to 353.

Now we can get an idea of the strength of a party given by the Shapley-Shubik power
index (Shapley value) or Banzhaf index, which are shown in Table 2.1.

Example 15. An interesting example is the Chamber of Deputies of the Czech Republic.
Note the difference between the power indices and the fraction of the seats of each party,
which can be seen in Table 2.2.

12
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Table 2.1: Power indices in European Parliament

Party Number of seats Fraction of seats Shapley value Banzhaf index
EEP 187 0.265625000 0.293111071 0.28877129
S&D 147 0.208806818 0.195987149 0.19299683
RE 98 0.139204545 0.154777820 0.15787109
ID 76 0.107954545 0.094577142 0.09416792

Greens-EFA 67 0.095170455 0.094498797 0.09416791
ECR 61 0.086647727 0.088162083 0.09406177

GUE/NGL 39 0.055397727 0.059476269 0.06217994
29× NI 1 0.001420455 0.000669299 0.00054425

Table 2.2: Power indices in Chamber of Deputies of the Czech Republic

Party Number of seats Fraction of seats Shapley value Banzhaf index
ANO 78 0.390 0.57457820 0.674491253
ODS 23 0.115 0.08985459 0.056676187
Pirates 22 0.110 0.08344433 0.056497679
SPD 20 0.100 0.06188256 0.052749018
KSČM 15 0.075 0.04889555 0.043823634
ČSSD 14 0.070 0.04267954 0.040074973

KDU-ČSL 10 0.050 0.03042791 0.022581221
TOP 09 7 0.035 0.02518315 0.021153160
STAN 6 0.030 0.01887002 0.017225991

5× Independent 1 0.005 0.00483683 0.002945377
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Chapter 3

Weighted voting games

In this chapter, we provide a survey of algorithms for computing power indices of weighted
voting games and show our own methods of computing the power indices. We examine com-
putational complexity of previously described methods and show that our method for com-
puting Shapley value, given a computational model more resembling real world computation,
achieves a better complexity.

Recall the definition of integer weighted voting game as given in Definition 13. We wish
to remind the reader of the notation describing an integer weighted voting game, given as

(q;w1, w2, . . . , wn)

where q ∈ N is the quota of the game and wi is the weight of player i ∈ N .

3.1 Survey of existing algorithms for computing power indices

It is NP-hard to decide whether a player i ∈ N can swing any coalitions in a given
weighted voting game [17]. A player has Banzhaf index and Shapley value zero if and only
if they can not swing any coalition. Therefore we can not hope for a polynomial algorithm
computing either of the power indices exactly.

Klinz and Woeginger [18] describe more efficient exponential algorithms for computing
the power indices. Aside from computing the power indices exactly, much research has
focused on their approximation. Among approximation methods are those based on multi-
linear extensions by Owen [19] and methods based on randomization by Castro, Gómez and
Tejada [20] or by Fatima, Wooldridge and Jennings [21, 22].

Also Aziz and Paterson [23] describe an algorithm which is polynomial in case the number
of weight values is bounded.

If we restrict ourselves to the case where all weights are integer, it is possible to design a
pseudo-polynomial algorithm in which the complexity is a polynomial of the value of q. Such
an algorithm is not polynomial in the strict sense, as the size of the representation of q is
logarithmic in the size of the value of q. This implies that the algorithm is still exponential
in the size of the input, which consists among others of the representation of q. The following
results have been made in this area.

15



CHAPTER 3. WEIGHTED VOTING GAMES

Tomomi Matsui and Yasuko Matsui [17] present a pseudo-polynomial algorithms for
computing Banzhaf and Shapley value of a single player. Takeaki Uno [24] presents pseudo-
polynomial algorithms for computing Banzhaf and Shapley values of all players. Both of
those studies present algorithms based on dynamic programming. Also, in both cases the
authors assume that every arithmetic operation takes constant time, which we argue is not
a reasonable assumption in Section 3.5.

An alternative approach using generating functions is proposed by Bilbao, J.M., Fernán-
dez, J.R., Losada, A.J. et al. [25]. The complexity depends on the degree of the polynomial
of the generating function, with the degree bounded by the sum of all weights.

Bolus [26] describes a method based on binary decision diagrams that achieves better
complexity in cases where the quasi-reduced ordered binary decision diagram of the minimal
winning coalitions is small and can be built quickly.

Chakravarty et al. [27] also consider various subclasses of integer weighted voting games
for which the power indices can be computed more efficiently.

We focus on the case when the weights of players are integer. An overview of the com-
plexities of the presented algorithms, including our own, can be seen below in Table 3.1.

In Section 3.5, we make the argument that assuming a constant time per arithmetic
operation is not a reasonable assumption, as this significantly affects the resulting complexity
of the algorithm. Instead, when assuming logarithmic cost per arithmetic operation, we re-
examine previously described algorithms with the best known running time and show new
lower bounds on their running time complexity. Exact definition of the computational models
can be found in Section 3.1.1

Subsequently, we present new algorithms and provide an asymptotically faster method
to compute the Shapley value of all players in Section 3.7. In addition to proving the
improvement of time complexity, we show that our implementation of those algorithms has
a better running time on test inputs in Section 5.1.2.

3.1.1 Models of computation

We present two computational models used to analyse complexity of algorithms and
compare them.

3.1.1.1 RAM

The description is based on the one presented by Mareš and Valla [28, page 56]. Here we
assume that every arithmetic operation takes constant time, no matter the size of operands.
Furthermore, any memory cell can store a number of arbitrary size. This model is frequently
used for analysis of algorithms. The model reflects real world computation if the numbers
saved in the memory cells are reasonably small.

3.1.1.2 LogRAM

We will denote the RAM with logarithmic cost of arithmetic operations as LogRAM. The
model is described also by Mareš and Valla [28, page 56]. The motivation behind this model
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is to accurately measure the complexity of algorithms which use very large numbers. The
model is the same as RAM except for the following changes.

• The complexity of addition and subtraction on two integers with at most n bits is
O(n).

• The complexity of multiplication of two integers with at most n bits is denoted by
M(n). We assume that M(n) is polynomial in n and M(n) = Ω(n).

• The complexity of multiplication of two polynomials with degree at most d and with
each coefficient being an integer with at most n bits is denoted byMp(d, n). We assume
that Mp(d, n) is polynomial in d and n and that Mp(d, n) = Ω(dn).

We do not assume explicit time complexities for multiplication, as it is still a researched topic
with possible future improvements and is a complicated topic by itself. But we allow the
assumption that integer multiplication has linear space complexity. This holds for example
for the commonly used Schöhagen-Strassen multiplication algorithm [29] which has time
complexity O(n log(n) log log(n)) and space complexity O(n) [30].

3.1.2 Complexities of existing algorithms

The following table shows time complexities of the known algorithms which can com-
pute power indices in integer weighted voting games. All of the listed algorithms have had
their complexities proven under the assumption of constant time per arithmetic operations
regardless of the size of the operands. For our algorithms we include the complexity under
the assumption of logarithmic cost per bit operation.

We choose to show lower bounds on Uno’s algorithms because their upper bounds are in
general case the best and we wish to show an improvement on those algorithms.

Table 3.1: Asymptotic complexities of exact algorithms for computing power indices of all
players in integer weighted voting games

Power index RAM LogRAM Reference
Banzhaf index O(nq) O(n2q) by Lemma 39 This thesis
Banzhaf index O(nq) Ω(n2q) by Proposition 31 [24]
Banzhaf index O(nq) (see 2) [26]
Banzhaf index O(n2q) [31]
Banzhaf index O(n2C) (see 1) [25]
Banzhaf index O(k(nk )k) (see 3) [23]
Banzhaf index O(n2 1.415n) [18]
Shapley value O(n2q) O(n3q + n2M(n log(n))) by Lemma 40 This thesis
Shapley value O(n2q) Ω(n2qM(n log(n))) by Proposition 32 [24]
Shapley value O(n2C) (see 1) [25]
Shapley value O(n3q) [31]
Shapley value O(n3q) (see 2) [26]
Shapley value O(n 1.415n) [18]
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1The number of nonzero coefficients of the generating function is bounded by C. For the
Banzhaf index, this number is equal to the number of different values that the total weight
of any coalition can take. For the Shapley value, this is equal to the number of unique pairs
of total weight and number of players that can be found in any coalition.

2These bounds are the expected value. The author also shows bounds as a function of
the size of quasi-reduced ordered binary decision diagrams of the minimal winning coalitions.
Those are not clearly comparable with the bounds of the other algorithms.

3The number of unique weight values is bounded by k.

3.2 Additional notation

The following notation will be used in the subsequent text.

Let S ⊆ N for some integer weighted voting game (N, v) with (q;w1, . . . , wn). We say
that the total weight of S the sum of weights over all players, that is

w(S) =
∑
i∈S

wi

We define f(S, i, j) to be equal to the number of coalitions on j players from S, such that
the total weight is i. For example, it holds f(∅, 0, 0) = f({i}, wi, 1) = 1.

Similarly, we define f(S, i) to be the number of coalitions of players from S with total
weight i. More formally, for any S ⊆ N and i, j ∈ N it holds

f(S, i, j) = |{T | w(T ) = i ∧ |T | = j ∧ T ⊆ S}|
f(S, i) = |{T | w(T ) = i ∧ T ⊆ S}|

By v ∗ u, we denote the convolution of vectors v and u. By v ∗q u we denote the first
q elements of v ∗ u. By v′ ∗q,n u′ we denote the matrix consisting of the first q rows and n
columns of v′ ∗ u′ where v and u are matrices. We assume that log denotes the logarithm of
base 2.

3.3 Preliminaries

In this section, we present the observations used in our algorithms. The approach of
computing the power indices using generating functions is described by Bilbao et al. [25].
The observation is that the power indices can be calculated by taking a product of certain
polynomials and taking coefficients of the resulting polynomial. We summarize those obser-
vations in the following Lemmas. For the sake of brevity, we provide proofs without using
generating functions.

Lemma 16 (Bilbao et al. [25]). Let S, S′ ⊆ N for some weighted voting game, such that
S ∩ S′ = ∅. Then it holds (f(S) ∗ f(S′))(i) = f(S ∪ S′, i).
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Proof. It holds

f(S ∪ S′, i) =
i∑

j=0

f(S, i− j)f(S′, j)

To create a coalition of total weight i, we must choose some (possibly none) players from S
and some from S′, such that the total sum of weights is i. This can be seen to be equivalent
to the definition of discrete convolution.

This immediately implies the following observation.

Observation 17. For every S ⊆ N and p ∈ N \ S it holds

f(S ∪ {p}, i) =

{
f(S, i) if i < wp

f(S, i) + f(S, i− wp) otherwise

Proof. Note that f({p}, i) has non-zero values for at most two different values of i, which
are f({p}, 0) = f({p}, wp) = 1. The given relation then follows from Lemma 16.

A similar observation holds for f(S, i, j).

Lemma 18 (Bilbao et al. [25]). Let S, S′ ⊆ N for some weighted voting game, such that
S ∩ S′ = ∅. Then it holds (f(S) ∗ f(S′))(i, j) = f(S ∪ S′, i, j).

Proof. It holds

f(S ∪ S′, i, j) =
i∑

k=0

j∑
`=0

f(S, i− k, j − `)f(S′, k, `)

To create a coalition of total weight i, we must choose some (possibly none) players from S
and some from S′, such that the total sum of weights is i and the total number of players is j.
This can be seen to be equivalent to the definition of two dimensional discrete convolution.

This also immediately implies the following observation.

Observation 19. For every S ⊆ N and p ∈ N \ S it holds

f(S ∪ {p}, i) =

{
f(S, i, j) if i < wp or j = 0

f(S, i, j) + f(S, i− wp, j − 1) otherwise

Proof. Note that f({p}, i, j) has non-zero values exactly two different values of (i, j), which
are f({p}, 0, 0) = f({p}, wp, 1) = 1. The given relation then follows from Lemma 18.

It is known that computing multiplication of polynomials is equivalent to computing
convolution of two vectors. Various algorithms have been devised for fast polynomial mul-
tiplication, which are therefore applicable for practical computation of the relation given in
Lemma 16. The following Lemma shows that also the relation given in Lemma 18 can be
computed using algorithms for fast polynomial multiplication.
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Lemma 20. Two dimensional convolution of two integer matrices with at most n rows and
at most m columns can be done in time O(Mp(nm, k)) where k is the maximum number of
bits of any coefficient.

Proof. Naghizadeh and Mauricio [32] describe a straightforward reduction of two demen-
sional discrete convolution to one dimensional discrete convolution with size of the input
unchanged.

The following Lemmas show a simple upper bound on the values of f(S, i) and f(S, i, j).

Lemma 21. Let S ⊆ N such that |S| = k. Then f(S, i) ≤ 2k for every i ∈ N.

Proof. We will show a proof by induction over the size of S denoted by k. For k = 0 this
holds, as every value of f(∅, i) is 0 except for f(∅, 0) = 1 which is in this case exactly 2k.

Now we show that if maxi∈{0,...,q−1} f(S, i) ≤ 2k with k = |S|, then

max
i∈{0,...,q−1}

f(S ∪ {p}, i) ≤ 2k+1

for any player p ∈ N \ S. Note that we can obtain f(S ∪ {p}, i) from f(S, i) by the relation
given by Observation 17.

By the induction hypothesis, it holds that f(S, i) ≤ 2k ≤ 2k+1 and also

f(S, i) + f(S ∪ {p}, i− wp) ≤ 2k + 2k = 2k+1

Lemma 22. Let S ⊆ N such that |S| = k. Then f(S, i, j) ≤ 2k for every i, j ∈ N.

Proof. Note that for any S ⊆ N it holds

f(S, i) =
n∑

j=0

f(S, i, j)

This can be seen from the definition of f as f(S, i, j) is the number of coalitions of weight
i on j players. Summing over all the possible values of j must give us the number of all
coalitions of weight i. Therefore by Lemma 21 it holds f(S, i, j) ≤ f(S, i) ≤ 2k.

In the following Lemma, we show that all weights greater than q can be set to q without
affecting the profit of any coalition.

Lemma 23. Let v(S) be the characteristic function of a weighted voting game with g =
(q;w1, w2, . . . , wn) and let v′(S) be the characteristic function of a weighted voting game
with

g′ = (q; min(w1, q),min(w2, q), . . . ,min(wn, q))

Then for every S ⊆ N it holds v(S) = v′(S).
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Proof. First we show that if v′(S) = 1 then v(S) = 1. It holds∑
i∈S

min(q, wi) ≤
∑
i∈S

wi

Note that v′(S) = 1 implies
∑

i∈S min(q, wi) ≥ q which in turn implies
∑

i∈S wi ≥ q and
therefore v(S) = 1.

Now we show that if v(S) = 1 then v′(S) = 1. Consider two cases. In the first case the
weight of every player in S is at most q and therefore total weight of S is the same in both
games. In the other case it must hold that there is a player i ∈ S such that wi > q. This
implies that wi = q in the game g′ and therefore v′(S) must be 1.

3.4 Bounds on complexity of dynamic programming methods

In this section, we construct tools further used in analysis in the following sections. We
show bounds on the required number of bits needed to keep the explicit values of f(S, i)
and f(S, i, j) as binary numbers. Those bounds are applicable to any methods that compute
f(S, i) or f(S, i, j) explicitly for a sufficient number of parameters.

The following definition introduces notation that helps with computing the number of
bits when representing sequences as a sequence of binary numbers.

Definition 24. Let n ∈ N. Then by bits(n) we denote the number of bits in binary repre-
sentation of the integer n. It holds

bits(n) = dlog(n)e+ 1

Let a = (a1, a2, . . . , ak) be a sequence of k elements such that every ai ∈ N. Then we set

bits(a) :=

k∑
i=1

bits(ai)

To represent a sequence a of integers in a computer in the most naive way (simply
keeping the binary representation of each number independently) we need at least bits(a)
bits of memory.

The following definition and the subsequent technical Lemma will be used in the analysis
in the later part.

Definition 25. Let B(n) be a sequence of integers such that

B(n) := (

(
n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n− 1

)
,

(
n

n

)
)

Lemma 26. It holds that bits(B(n)) = Ω(n2)

Proof. The lower bound is shown as follows. We expand by the Definitions 25 and 24.

bits(B(n)) =

n∑
i=0

dlog(

(
n

i

)
)e+ 1 ≥

n∑
i=1

log(

(
n

i

)
) =

n∑
i=1

log(
n!

(n− i)! i!
) =
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=

n∑
i=1

log(n!)−2

n∑
i=1

log(i!) = n log(n!)−2

n∑
i=1

i∑
j=1

log(j) = n

n∑
i=1

log(i)−2

n∑
i=1

(n−i+1) log(i) =

=

n∑
i=1

n log(i)− 2n log(i) + 2i log(i)− 2 log(i) =

n∑
i=1

(2i− n− 2) log(i) =

= 2
n∑

i=1

i log(i)− (n+ 2)
n∑

i=1

log(i)
1
≥ 2

∫ n

0
x log(x) dx− (n+ 2)

∫ n+1

1
log(x) dx =

= −n2 log(n+ 1) + n2 log(n) +
1

2
n2 − 3n log(n+ 1) + 2n− 2 log(n+ 1)

Note that in inequality 1, we use the integral lower bound for the added sum and use the
integral upper bound for the subtracted sum. Therefore the whole expression is a valid lower
bound.

Now we show that the asymptotic bounds of the expression are Θ(n2).

lim
n→∞

−n2 log(n+ 1) + n2 log(n) + 1
2n

2 − 3n log(n+ 1) + 2n− 2 log(n+ 1)

n2
=

= lim
n→∞

−n2 log(n+ 1) + n2 log(n) + 1
2n

2

n2
= lim

n→∞

n2(log(n)− log(n+ 1)) + 1
2n

2

n2
=

= lim
n→∞

n2 log( n
n+1) + 1

2n
2

n2
= lim

n→∞
log(

n

n+ 1
) +

1

2
=

1

2

We derived the asymptotic bound of Θ(n2) on the lower bound of the number of bits
required to represent B(n). Therefore to represent B(n), we need Ω(n2) bits.

Lemma 27. Let S ⊆ N for some integer weighted voting game. It holds that

bits(f(S, 0), f(S, 1), f(S, 2), . . . , f(S, q − 2), f(S, q − 1)) = O(nq)

Proof. By Lemma 21 every element in f(S, i) has value at most 2|S|, therefore bits(f(S, i))
for every i is at most n + 1. Thus the sequence a created by values of f(S, i) for every
0 ≤ i < q has bits(a) ≤ (k + 1)q = O(nq).

Lemma 28. For every n0 ∈ N there exists an integer weighted voting game on n ≥ n0
players such that for every S ⊆ N with |S| ≥ n/2, it holds

bits(f(S, 0), f(S, 1), f(S, 2), . . . , f(S, q − 2), f(S, q − 1)) = Ω(nq)

Proof. Consider the infinite class of integer weighted voting games G, where every player has
weight 1 and the quota is equal to the number of players. That is

G = {(N = {1, . . . , n}, g = (n;w1 = 1, w2 = 1, . . . , wn = 1)) | n ∈ N}

We will show that for this class of inputs, the required number of bits to represent f(S, i)
with |S| ≥ n/2 is at least Ω(nq).
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Let k = |S|. Note that f(S, i) =
(
k
i

)
. This holds because a coalition of weight i is created

by choosing exactly i players out of k, therefore there are
(
k
i

)
possible coalitions of weight

i on players in S. Therefore by Lemma 26, representing the sequence created by values of
f(S, i) for 0 ≤ i ≤ k takes Ω(k2) bits. For any k ≥ n/2 this results in Ω(n2) = Ω(nq)

Lemma 29. Let S ⊆ N for some integer weighted voting game. It holds that

n∑
i=0

q−1∑
j=0

bits(f(S, i, j)) = O(n2q)

Proof. This follows from Lemma 22. For every i, j ∈ N it holds f(S, i, j) ≤ 2|S| ≤ 2n,
therefore bits(f(S, i, j)) ≤ n + 1. Because we are summing over nq values, we get the
resulting bound of O(n2q).

Lemma 30. For every n0 ∈ N there exists an integer weighted voting game on n ≥ n0
players such that for every S ⊆ N with |S| ≥ 3n/4, it holds

n∑
i=0

q−1∑
j=0

bits(f(S, i, j)) = Ω(n2q)

Proof. Consider the infinite class of integer weighted voting games

G′ = {(N = {1, . . . , n}, g = (q =
∑
i

wi; 1, 2, 3, . . . , n/2, 1, 1, 1, . . . , 1)) | n ∈ 4N}

By 4N we denote the set of all natural numbers divisible by 4.
Note that a game g ∈ G′ of n players has its quota equal to the sum of all weights.

Additionaly, it has exactly n/2 + 1 players of weights 1 and the rest of players has weights
2, 3, 4, . . . , n/2. Let S ⊆ N such that |S| ≥ 3n/4. We show that to represent values of
f(S, i, j), we need at least Ω(n2q) bits.

Note that because of the size of S it has to contain at least n/4 players of weight 1. Let
P be all players in S with weight greater than 1. It also holds that P must contain at least
n/4 players.

Note that for every j ∈ P and k ∈ N it holds f(S, k+ 1, j + k) ≥
(n/4

k

)
because to create

a coalition of weight j + k we can create a coalition containing player j of weight j and k
other players of weight 1. There are at least

(n/4
k

)
different ways to choose those k players.

For every p ∈ P , we get a sequence of coordinates

sp = ((1, p), (2, p+ 1), (3, p+ 2), . . . , (n/4 + 1, p+ n/4))

Note that for every two different p, p′ ∈ P , the sets induced by their respective sp and sp′
are disjoint. Therefore for every p ∈ P we get a sequence of n/4 values in f(S, i, j) for which
it holds

f(S, sp,i) ≥
(
n/4

i

)
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for every i ∈ {1, . . . , n/4}. Representing all those f(S, sp,i) for a fixed p takes Ω((n/4)2) by
Lemma 26. Representing f(S, sp,i) for all p ∈ P therefore requires the total of at least

Ω(n/4 · (n/4)2) = Ω(n3) = Ω(n2q)

bits.

3.5 Lower bounds on complexity of previously described meth-
ods

The main observation is that the number of coalitions of a given weight can be very high.
Consider the simplest case where we have n players of weight 0. Then we have exactly 2n

coalitions of total weight 0.
This is clearly a degenerate case, as we can safely ignore all players of weight 0 when

computing the power indices. It follows from Lemmas 28 and 30 that the numbers of coali-
tions are sufficiently high as to affect the complexity of resulting algorithms by a factor of
n, even when no players of weight 0 are present.

We therefore argue that the model in which an arithmetic operation takes constant time
is not sufficient for many algorithms that compute Shapley value or Banzhaf index. While
the tools presented in Section 3.4 may be applicable to several published algorithms, we
choose to show lower bounds on the algorithms presented by Uno [24]. The reason is that
those are to our knowledge asymptotically fastest algorithms for computing power indices of
integer weighted voting games.

Proposition 31. Algorithm by Uno [24] for computing Banzhaf indices of all players has
running time at least Ω(n2q).

Proof. The following pseudocode describes the algorithm for computing Banzhaf indices of
all players by Uno [24]. In the pseudocode, we refer to content of and notation used in the
paper by Uno [24], namely in Chapter 2.

Algorithm 1 Banzhaf index of all players by Uno [24]

1: procedure UnoBanzhaf(g = (q;w1, w2, . . . , wn))
2: Compute V (f(pn−1)) by Property 1 [24, Chapter 2]
3: for i ∈ {n, n− 1, n− 2, . . . , 1} do
4: Compute V (h(i)) from V (b(i)) [24, Chapter 2]
5: . Given in [24, Chapter 2]
6: φi =

∑q−1
z=0 f(i, z)× (h(i, q − 1− z)− h(i,max(q − wi − z, 0)− 1))

7: if i < n then
8: Compute V (b(i)) from V (b(i+ 1)) by the relation in [24, Chapter 2]
9: end if

10: end for
11: return φ
12: end procedure
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Note that the definition of f(i, y) by Uno [24, Chapter 2] is equal to our definition
of f({1, 2, . . . , i}, y) given in Section 3.2. Also note that on line 2 we compute values of
f({1, 2, . . . , i}, y) for every 1 ≤ i ≤ n and 0 ≤ y < q. Therefore Lemma 28 applies and it
follows that we have to perform at least n/2 additions on a total of Ω(nq) bits. Therefore
the resulting complexity is at least Ω(n2q).

Proposition 32. Algorithm by Uno [24] for computing Shapley values of all players has
running time in the worst case at least Ω(n2qM(n log(n))).

Proof. The following pseudocode describes the algorithm for computing Shapley value of all
players by Uno [24]. In the pseudocode, we refer to content of and notation used in the
paper by Uno [24], namely in Chapter 4.

Algorithm 2 Shapley value of all players by Uno [24]

1: procedure UnoShapley(g = (q;w1, w2, . . . , wn))
2: Compute V (f(pn−1)) by Property 2 [24, Chapter 4]
3: for i ∈ {n, n− 1, n− 2, . . . , 1} do
4: Compute V (h(i)) from V (b(i)) [24, Chapter 4]
5: φi =

∑q−1
z=0

∑i−1
k=0(f(i−1, k, z)× (h(i, k, q−1−z)−h(i, k,max(q−wi−z, 0)−1)))

6: . Given in Lemma 1 [24, Chapter 4]
7: if i < n then
8: Compute V (b(i)) from V (b(i+ 1)) by Property 3 [24, Chapter 4]
9: end if

10: end for
11: return φ
12: end procedure

The high complexity can be found on line 5. Consider for example the class of weighted
voting games G given in proof of Lemma 28. For such a game, it holds b(i, k, y) ≥ b(n/2)c! for
every i ≤ n/2, k ≤ n and y ≥ n/2 by the definition of b [24, Chapter 4]. This holds, because
in this case b(i, k, y) is at least the number of coalitions on players from {i, i+1, i+2, . . . , n}
and of weight y, multiplied by (y+k)!(n−y−k−1)!, therefore bits(b(i, k, y)) = Ω(n log(n)).
It also holds h(i, k, y) ≥ b(i, k, y) which can be seen from definition of h [24, Chapter 4].

Now note that the multiplication on line 5 takes at least O(M(n log(n))) time for every
value of z and k. Therefore the resulting complexity is at least Ω(n2qM(n log(n))).

3.6 Computing the power index of a single player

3.6.1 Banzhaf index

We use a divide and conquer approach to compute the Banzhaf index of a single player.
The idea is to recursively compute f(S, i) by splitting S into two disjoint subsets of the same
size until we reach an instance containing only one (or zero) player.
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Algorithm 3 Computes f(S, i) for S = ({first,first + 1, . . . , last− 1, last}) and 0 ≤ i < q

1: procedure BanzhafRec(first, last, g = (q;w1, w2, . . . , wn))
2: if first < 0 or last ≥ n then
3: return (1) . Empty range - f(∅, i)
4: else if first = last then
5: return (1, 0, . . . , 0, 1) ∈ Nwfirst . Return f({first}, i)
6: else
7: mid← b(first + last)/2c
8: . Return f({first, . . . ,mid} ∪ {mid + 1, . . . , last}, i)
9: return BanzhafRec(first, mid, g) ∗q BanzhafRec(mid + 1, last, g)

10: end if
11: end procedure

Lemma 33. Let a, b ∈ {1, 2, . . . , n}, a ≤ b.
For a given integer weighted voting game with known g = (q;w1, w2, . . . , wn) Algorithm

3 correctly computes f({a, a+ 1, . . . , b}, i) for every 0 ≤ i < q. Furthermore, it runs in time
O(Mp(q, n) log(n)).

Proof. Lines 3 and 5 return correct results by definition of f(S, i). On line 9, we get the first
q elements of f(S, {first, . . . , last}) by Lemma 16. Note that to compute (x ∗ y)i, we need
only the first i elements of x and y. Therefore we only require at most q first elements of
f(S, i) for any S throughout the algorithm.

Now we show the time complexity. We can assume that the number of players is n = 2k,
if it is less, players of weight 0 can be added without affecting the outcome. This also does
not change the asymptotic complexity of Mp(q, n) because we assume that Mp(q, n) is a
polynomial of q and n.

In every nontrivial case of the algorithm, we perform two recursive calls. Consider an
instance on the i-th level of recursion which returns f(S, i) for some S ⊆ N with |S| = n/2i.
It holds by Lemma 21 that f(S, i) ≤ 2n/2

i and the time to merge the two instances on line
9 is at most O(Mp(q, n/2

i)).
On the i-th level of recursion we gave 2i. It holds Mp(q, n/2

i) = Ω(qn/2i) therefore
the i-th level of recursion takes at most Mp(q, n) time. We have at most log(n) levels of
recursion, therefore the final complexity is at most O(Mp(q, n) log(n)).

Algorithm 4 Banzhaf index of player p
1: procedure BanzhafSingle(p, g = (q;w1, w2, . . . , wn))
2: r = BanzhafRec(1, i− 1, g) ∗q BanzhafRec(i+ 1, n, g) . Computes f(N \ {p}, i)
3: return 2−n+1

∑q−1
i=q−wi

ri
4: end procedure

Lemma 34. For a given integer weighted voting game with known g = (q;w1, w2, . . . , wn),
Algorithm 4 correctly computes the Banzhaf index of player p. Furthermore, it runs in time
O(Mp(q, n) log(n)).
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Proof. On line 3, we compute βp from f(N \ {p}, i) by the following relation.

2n−1βi =
∑

S⊆N\{p}

v(S ∪ {i})− v(S) =
∑

S⊆N,q−wp≤w(S)<q

1 =

q−1∑
i=q−wp

f(S ∪ {p}, i)

By Lemma 33, computing r on line 2 takes O(Mp(q, n) log(n)) time and O(nq) space.
The sum over elements of r can be done in time O(nq). This follows from Lemma 27.
Division by a power of two can be done quickly. Therefore the resulting time and space
complexity are the same as that of Algorithm 3.

3.6.2 Shapley index

We apply the same divide and conquer approach to computing the Shapley value of a
single player.

Algorithm 5 Computes f({first,first+1, . . . , last−1, last}, i, j) for 0 ≤ i < q and 0 ≤ j ≤ n
1: procedure ShapleyRec(first, last, g = (q;w1, w2, . . . , wn))
2: if first < 0 or last ≥ n then
3: return (1) . Empty range - f(∅, i, j)
4: else if first = last then
5: r ∈ N(wfirst+1)×2

6: fill r with zeros
7: r0,0 ← 1
8: rwfirst,1 ← 1
9: return r . Return f({first}, i, j)

10: else
11: mid← (first + last)/2
12: . Return f({first, . . . ,mid} ∪ {mid + 1, . . . , last}, i, j)
13: return ShapleyRec(first, mid, g) ∗q,n ShapleyRec(mid + 1, last, g)
14: end if
15: end procedure

Lemma 35. Let a, b ∈ N, 1 ≤ a ≤ b ≤ n. For a given integer weighted voting game
with known g = (q;w1, w2, . . . , wn), Algorithm 5 correctly computes f({a, a+ 1, . . . , b}, i, j).
Furthermore, the algorithm runs in time O(Mp(nq, n)).

Proof. Lines 3 and 9 are correct by definition of f(S, i, j). On line 13, we correctly merge
two instances by Lemma 18.

Now we show the time complexity. We can assume that n = 2k. If it is less, players
of weight 0 can be added without affecting the outcome. This also does not change the
asymptotic complexity of Mp(q, n) because we assume that Mp(q, n) is a polynomial of q
and n.
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In every nontrivial case of the algorithm, we perform two recursive calls. Consider an
instance on the i-th level of recursion which returns f(S, i, j) for some S ⊆ N with |S| = n/2i

and for all 0 ≤ i < q and 0 ≤ j ≤ |S|. It holds by Lemma 22 that f(S, i, j) ≤ 2n/2
i and

the merging of the two instances is done by convolution of two matrices of size q× (|S|+ 1).
Therefore the time to merge the two instances on line 9 is at most O(Mp(nq/2

i, n/2i)) by
Lemma 20.

Therefore the running time is given by

c

n∑
i=1

2iMp(nq/2
i, n/2i) ≤ c

n∑
i=1

2−iMp(nq, n) = O(Mp(nq, n))

for some fixed constant c ∈ R.

Algorithm 6 Shapley index of player p
1: procedure ShapleySingle(p, g = (q;w1, w2, . . . , wn))
2: r ← ShapleyRec(1, i− 1, g) ∗q ShapleyRec(i+ 1, n, g) . Computes
f(N \ {p}, i, j)

3: return (n!)−1
∑n−1

k=0 k! (n− k − 1)!
∑q−1

j=q−wi
rj,k

4: end procedure

Lemma 36. For a given game g = (q;w1, w2, . . . , wn) and a player p, Algorithm 6 correctly
computes Shapley value of player p. Furthermore, the algorithm runs in time

O(Mp(nq, n) + nM(n log(n)))

.

Proof. On line 3, we compute φp from f(N \ {p}) by the following relation.

φp =
∑

T⊆N\{i}

|T |! (n− |T | − 1)!

n!
(v(T ∪{i})−v(T )) =

∑
T⊆N,q−wp≤w(T )<q

|T |! (n− |T | − 1)!

n!
=

=
1

n!

q−1∑
i=q−wp

n−1∑
j=0

k! (n− j − 1)! f(N \ {p}, i, j)

By Lemma 35, the computation on line 2 is done in time O(Mp(nq, n)) and using O(n2q)
space. In addition to that, we have to compute 1!, 2!, 3!, . . . , n!. This can be done in time
O(nM(n log(n))).
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3.7 Computing power indices of all players

The following key observation is made by Uno [24].

Lemma 37 (Uno [24]). For any p ∈ N , let S ⊆ N such that p ∈ S. Then

f(S \ {p}, i) =

{
f(S, i) if i < wp

f(S, i)− f(S \ {p}, i− wp) otherwise

Proof. We will show a proof by induction over j. In case 0 ≤ j < wi this holds, as the player
i can not be in any coalition of weight less than wi. Otherwise it holds that

f(S, i) = f(S \ {p}, i− wi) + f(S \ {p}, i)

as this amounts to all coalitions of weight i with and without player i. Expressing f(S\{p}, i)
concludes the proof.

A similar observation holds regarding Shapley value.

Lemma 38 (Uno [24]). For any p ∈ N , let S ⊆ N such that p ∈ S. Then

f(S \ {p}, i, j) =

{
f(S, i, j) if i < wi or j = 0

f(S, i, j)− f(S \ {p}, i− wi, k − 1) otherwise

Proof. We will show a proof by induction over i + j. In case 0 ≤ j < wi this holds, as the
player p can not be in any coalition of weight less than wi. Also if j = 0 this clearly holds
as the number of coalitions is independent on S. Otherwise it holds that

f(S, i, j) = f(S \ {p}, i− wp, j − 1) + f(S \ {p}, i, j)

as this amounts to all coalitions of weight i with j players with and without player p.
Expressing f(S \ {p}, i, j) concludes the proof.

3.7.1 Banzhaf index

The main idea is to first compute f(N, i) for all necessary values of i. Using Lemma 37
we can quickly transform f(N, i) to f(N \ {p}, i) for each player p ∈ N which then allows
us to compute the number of swings for each p.
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Algorithm 7 Banzhaf index of all players
1: procedure BanzhafAll(g = (q;w0, w1, . . . , wn−1))
2: for p ∈ {1, . . . , n} do
3: wp ← min(wp, q)
4: end for
5: t← (0, . . . , 0) ∈ N2q . t contains values of f(∅, i) for 0 ≤ i < 2q
6: for p ∈ {1, . . . , n} do
7: Recompute t by Observation 17 so that t contains values of f({1, 2, . . . , p}, i)
8: end for
9: res← (0, . . . , 0) ∈ Nn . t now contains values of f(N, i) for 0 ≤ i < 2q

10: for p ∈ {1, . . . , n} do
11: c← t
12: Recompute c by Lemma 37 so c contains values of f(N \ {p}, i)
13: resp ← 2−n+1

∑q−1
i=q−wp

ci
14: end for
15: return res
16: end procedure

Theorem 39. Algorithm 7 correctly returns a vector of Banzhaf indices of all players and
runs in time O(n2q) and uses O(nq) memory.

Proof. By Lemma 23, line 3 transforms the game in a way that will not affect the value of
any coalition, therefore it can not affect the resulting power indices. Note that t will contain
the number of coalitions of total weight up to 2q − 1 after finishing the for loop on line 6.
We show that this suffices to compute the number of swings for each player.

Suppose that a coalition of size greater than 2q − 1 can be swinged by removing any
player and therefore such a coalition would affect the outcome. To swing the coalition, we
need to decrease its weight by at least q + 1 by removing a single player. But that is not
possible, because on line 3, we set the weight of every player to be at most q.

The following will show the time complexity. The loop at line 6 requires at most 2qn
additions of integers with at most n bits by Lemma 21. The same is true for the loop on
line 10 which additionally only copies t and computes the number of swings on line 13. We
assume that the division by a power of two can be done quickly. Therefore the resulting
time complexity is O(n2q).

As for the space complexity, we only keep values of f(N, i) and f(N \{p}, i) for 0 ≤ i < 2q
and for only one value of p. By Lemma 27 this takes O(nq) space.

3.7.2 Shapley value

The idea is similar to the one on which the algorithm for computing Banzhaf indices is
based. First we compute f(N, i, j) for all necessary values of i and j. Using Lemma 38 we
can quickly transform f(N, i, j) to f(N \ {p}, i, j) for each player p ∈ N which then allows
us to compute the Shapley value of each p.

30



3.7. COMPUTING POWER INDICES OF ALL PLAYERS

Algorithm 8 Shapley value of all players
1: procedure ShapleyAll(g = (q;w0, w1, . . . , wn−1))
2: for p ∈ {1, . . . , n} do
3: wp ← min(wp, q)
4: end for
5: t← (0, . . . , 0) ∈ N2q×(n+1)

6: . t contains values of f(∅, i, j) for 0 ≤ i < 2q and 0 ≤ j ≤ n
7: for p ∈ {1, . . . , n} do
8: Recompute t by Observation 19 so that t contains values of f({1, 2, . . . , p}, i, j)
9: with 0 ≤ i < 2q and 0 ≤ j ≤ n

10: end for
11: res← (0, . . . , 0) ∈ Nn

12: for p ∈ {1, . . . , n} do
13: c← t
14: Recompute c by Lemma 38 so c contains values of f(N \ {p}, i, j)
15: for j ∈ {0, 1, . . . , n− 1} do
16: s←

∑q−1
i=q−wp

ci,j
17: resp ← resp + (s · j! · (n− j − 1)!)
18: end for
19: resi ← resi/n!
20: end for
21: return res
22: end procedure

Theorem 40. Algorithm 8 correctly returns a vector of Shapley values of all players and
runs in time O(n3q + n2M(n log(n))) and uses O(n2q + n2 log(n)) memory.

Proof. By Lemma 23, line 3 transforms the game in a way that will not affect the value of
any coalition, therefore it can not affect the resulting power indices.

Note that t will contain the number of coalitions of total weight up to 2q−1 after finishing
the for loop on line 7. We show that this suffices to compute the Shapley value of each player.
The argument is the same as the one in Theorem 39.

Suppose that a coalition of size greater than 2q−1 can have its profit changed by removing
any player and therefore such a coalition would affect the outcome. To change the profit of
the coalition, we need to decrease its weight by at least q + 1 by removing a single player.
But that is not possible, because on line 3, we set the weight of every player to be at most q.

We compute the numerator of the Shapley value of player p on line 15 and divide by the
denominator on line 19.

As for the time complexity, throughout the algorithm we need values of 1!, 2!, 3!, . . . , n!.
Computing those takes O(nM(n log(n))) time. Note that computing both n! from (n− 1)!
and vice versa can be done in M(n log(n)) using (TODO) good division. Computing the
expression on line 17 takes O(M(n log(n))) and is done for each player n times, therefore it
adds O(n2M(n log(n))) to the total complexity.

Additionally, the loop at line 7 requires at most 2qn2 additions of integers with at most
n bits by Lemma 22. The same is true for the loop on line 12 which additionally copies t and
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computes the numerator of the Shapley value, which has been discussed above. Therefore
the resulting time complexity is O(n3q + n2M(n log(n))).

Now we show the space complexity. At any point in time, we keep the values of f(N, i, j)
and f(N \ {p}, i, j) for 0 ≤ i < 2q, 0 ≤ j ≤ n and for one player p. This by Lemma 29 takes
O(n2q) space. Additionally, the number of bits of both the numerator and denominator
of resp is O(n log(n)), therefore the size of the output is O(n2 log(n)). The total space
complexity is therefore O(n2q + n2 log(n)).

3.7.3 Possible optimizations

We show some possible straightforward optimizations of the algorithms, which may be
useful in practice. We employ these optimizations in our implementation. More on the
implementation can be found in Section 5.1.

Note that to compute f(N, i) for all i, we can use Algorithm 3 and similarly use Algo-
rithm 5 to compute f(N, i, j) for all necessary i and j. This can be significantly faster than
the simple computation given by Observations 17 and 19, provided we can quickly multiply
large polynomials. This provides one possible speed-up of Algorithms 7 and 8.

Also note that after computing f(N, i) and f(N, i, j), the computation of the resulting
power index of each player is independent. Therefore, we need to compute the power index
for every unique weight only one.
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Chapter 4

Coalitional games and computational
biology

In this chapter we focus on microarray games described by Moretti et al. [5] and present
a new class of coalitional games called additive voting games. Microarray games present a
framework used to analyse data from microarray experiments. The practical use of microar-
ray games has been shown by Moretti et al. [6].

As for our original results in this chapter, in Section 4.1.3 we show that finding strong
coalitions of limited size in microarray games is NP-hard and even W[1]-hard. The notion
of additive voting games, described in Section 4.2 is also an original result.

4.1 Microarray games

Morreti et al. [5] describe microarray games as a tool for extracting information about
relevance of genes in situations where we want to differentiate between two classes of samples.
First, we show a definition of the class of microarray games and subsequently show how they
can be used to analyse gene expression data.

We provide a definition equivalent to the one in [5]. Every microarray game can be
defined by a sequence of unanimity games. First, we define unanimity games and then show
how they can be used to construct microarray games.

Definition 41. A coalitional game (N, v) is an unanimity game if there exists T ⊆ N such
that for every S ⊆ N

v(S) =

{
1 if T ⊆ S
0 otherwise

Every unanimity game can be uniquely defined by its set T ⊆ N .

Definition 42. A coalitional game (N, v) is a microarray game if there exists a sequence of
unanimity games (g1, g2, . . . , gm) such that for every S ⊆ N

v(S) =
1

m

m∑
i=1

vgi(S)
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where vgi is the characteristic function of the unanimity game gi.

A microarray game can be therefore defined by a sequence (T1, T2, . . . , Tm) where each
Ti ⊆ N . We will call each Ti a check. The value of v(S) for a microarray game with
(T1, T2, . . . , Tm) can be seen to be equal to the number of checks that are a subset of S,
normalized by the number of checks.

4.1.1 Construction based on microarray experiments

Now we show how to model a result of a microarray experiment using microarray games
as by Moretti et al. [5]. First, we measure expressions of two different classes of samples,
for example healthy tissue and corresponding tumor tissue. The players of the game are the
genes, for which we performed the experiment.

Then by some external methods, we identify genes which are differentially expressed
in the tumor tissue. Moretti et al. [6] consider genes to be abnormally expressed if their
expression value is at least one standard deviation lower or greater than the mean expression
of the given gene in the control group.

Now we construct the sequence of checks that will define the microarray game. We create
a check for every sample of tumor tissue. Each check will consist of the set of abnormally
expressed genes. The coalition is then considered a set of abnormally expressed genes and
its profit is proportional to the number tumor samples, which exhibit abnormal expression
in only those genes that are a part of the coalition.

The profit of the coalition can be understood as something resembling "likelihood" of
the coalition representing a new tumor sample. The term likelihood being used merely as
an intuitive notion.

4.1.2 Computing power indices

Computing the Shapley value of a microarray game turns out to be surprisingly easy.
Consider a unanimity game defined by T ⊆ N . Every player in N \ T can have no effect on
the outcome of the game and are a null player (as defined in Property 4).

Lemma 43. The Shapley value of each player in a unanimity game (N, v) defined by T ⊆ N
is given as

φi =

{
1/|T | if i ∈ T
0 if i /∈ T

Proof. Recall that as shown in Section 2.1.2, Shapley value holds the properties Null player,
Symmetry and Efficiency (Properties 4, 5 and 1). Each player i ∈ N \ T is a null player and
from Property 4 (Null player) follows that φi(v) = 0.

From Property 1 (Efficiency) follows that v(N) = 1 and from Property 5 (Symmetry)
follows that for every two j, j′ ∈ T it holds φj(v) = φj′(v), therefore φj(v) = φj′ = 1/|T |.

Now we can compute the Shapley values of microarray games as sums of Shapley values
of its unanimity games.
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Lemma 44. The Shapley value of each player in a microarray game (N, v) defined by a
sequence of checks (T1, T2, . . . , Tm) is given as

φi(v) =
m∑
i=1

φi(vi)

where vi is the characteristic function of the unanimity game defined by Ti.

Proof. Follows from Definition 42 and Property 6 (Linearity) of the Shapley value, which
holds by Lemma 6.

Similar computation can be shown for the Banzhaf index.

Lemma 45. The Banzhaf index of each player in a unanimity game (N, v) defined by T ⊆ N
is given as

βi =

{
2n−|T | if i ∈ T
0 if i /∈ T

Proof. The Banzhaf index satisfies the Property 4 (Null player) [19], therefore if i is a null
player then βi = 0. Otherwise, the number of swings can be counted using the following
observation. The player i can swing the coalition S ⊆ N \ {i} if and only all players in T
except i are present in S. The presence of players in N \ T affects nothing, therefore there
are 2n−|T | subsets that i can swing.

Lemma 46. The Banzhaf index of each player in a microarray game (N, v) defined by a
sequence of checks (T1, T2, . . . , Tm) is given as

βi(v) =
m∑
i=1

βi(vi)

where vi is the characteristic function of the unanimity game defined by Ti.

Proof. Follows from Definition 42 and Property 6 (Linearity) of the Banzhaf index value [19].

4.1.3 Hardness of finding small strong coalitions

This section is motivated by the following question. Given a microarray game, can we
efficiently find small coalitions with large influence? In the context of gene expressions,
this would mean finding small groups with high relevance to inducing for example tumorous
behaviour. For its most natural formulation as a decision problem, we show that the problem
is at least as hard as Clique. In the Clique problem, on the input we are given a graph
and an integer k and ask, whether the graph contains a set of maximally connected vertices
of size at least k.

Theorem 47. Let g = (N, v) be a microarray game and k ∈ N. Then deciding if there exists
a coalition S ⊆ N with profit at least c ∈ Q such that |S| ≤ k is at least as hard as Clique
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Proof. We show a reduction from Clique. Let G = (V,E) be a simple graph. We construct
a microarray game g, such that G has a clique of size k if and only if the maximum profit of
coalition of size k is at least

(
k
n

)
/ |E(G)|.

Let the set of players N = V . Let g be defined by the set of checks C = E. Let

r = max
S⊆N,|S|≤k

vg(S)

That is, r is the maximum profit a coalition of size at most k. Then r ≥
(
k
2

)
/ |C| if and only

if G has a clique of size k.
First we show that if r ≥

(
k
2

)
/ |C|, then G has a clique of size k. If r ≥

(
k
2

)
/ |C|, then

there must exist a coalition S∗ such that
(
k
2

)
checks are subsets of S and |S| ≥ k. Therefore,

the coalition S∗ is a set of vertices in G, such that each pair in S∗ is connected by an edge,
as there is no other way to obtain

(
k
2

)
edges on a subgraph induced by some k vertices.

Therefore S∗ corresponds to a clique of size k in G.
Now we show that if G has a clique of size k, then r ≥

(
k
2

)
/ |C|. If there is a clique

S∗ in G of size k, then this clique contains exactly
(
k
2

)
edges. Every edge between a pair of

vertices in S∗ is a subset of S∗, therefore S∗ will have profit r =
(
k
2

)
/ |C| in g.

This shows that finding coalitions with bounded size of a given profit is NP-hard. Using
results in theory of parameterized algorithms, we can derive even stronger results.

Theorem 48 (Downey, Fellows [33]). Independent set is complete for W[1]

This immediately implies that Clique is also W[1]-complete and therefore finding coali-
tions with bounded size and a given profit is also W[1]-hard. This in turn implies that there
is no algorithm with running time of the form O(f(k)nO(1)) [34] solving the given problem.

As shown in Section 4.2.1, every microarray game can be encoded as an additive voting
game, therefore these results also extend to additive voting games.

4.2 Additive voting games

We introduce a new class of coalitional games called additive voting games. The moti-
vation is to construct coalitional games which can be used as models of different behaviours
arising as a result of abnormal gene expressions. In Section 4.2.1 we also show that additive
voting games are a possible generalization of the class of microarray games.

Definition 49. A coalitional game (N, v) is an additive voting game if there exists a sequence
of weighted voting games (g1, g2, . . . , gm) such that for every S ⊆ N

v(S) =
m∑
i=1

vgi(S)

where vgi is the characteristic function of the weighted voting game gi.

An additive voting game can be uniquely defined by its sequence of weighted voting
games. For an additive voting game g = (g1, g2, . . . , gm) we say that gi is a subgame of g.
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4.2.1 A generalization of microarray games

In this section, we show how to encode any microarray game as an additive voting game.
From this follows that microarray games are a subset of additive voting games.

By saying that two games (N, v) and (N, v′) are equivalent, we mean that for every S ⊆ N
it holds v(S) = v′(S).

Proposition 50. For every microarray game, there is an equivalent additive voting game

Proof. Note the similarity of definitions of microarray games (Definition 42) and additive
voting games (Definition 41). We show how to encode a unanimity game as a weighted
voting game. Then we can simply transform a sequence of unanimity games into a sequence
of weighted voting games.

Let (N, v) be a microarray game defined by T ⊆ N . Then we create the equivalent
weighted voting game (N, v′) by setting q = |T | and

wi =

{
1 if i ∈ T
0 otherwise

for every i ∈ N . Now it holds that v′(S) = 1 if and only if all players with weight 1 are
present in S. Therefore, for every S ⊆ N it holds v(S) = v′(S).

4.2.2 Computing power indices

Computing the Shapley value of an additive voting game can be done simply by summing
up the Shapley values of its subgames. This fact is summarized as follows.

Lemma 51. Let (N, v) be an additive voting game defined by a sequence of weighted voting
games (g1, g2, . . . , gm). Then the Shapley value of player i ∈ N is given as

φi(v) =

m∑
i=1

φi(vgi)

where vgi is the characteristic function of the weighted voting game gi.

Proof. Follows from Definition 41 of the additive voting game and Property 6 (Linearity) of
the Shapley value, which is shown in Lemma 11.

The same argument holds for the Banzhaf index.

Lemma 52. Let (N, v) be an additive voting game defined by a sequence of weighted voting
games (g1, g2, . . . , gm). Then the Banzhaf index of player i ∈ N is given as

βi(v) =
m∑
i=1

βi(vgi)

where vgi is the characteristic function of the weighted voting game gi.
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Proof. Follows from Definition 41 of the additive voting game and Property 6 (Linearity) of
the Banzhaf index [19].

Efficient methods to compute power indices of the individual weighted voting games that
are described in Chapter 3.
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Chapter 5

Practical results

5.1 The package implementation

We present a package called VotingGames for the programming language R, containing
methods for computing Shapley values and Banzhaf indices of integer weighted voting games
and additive voting games. The package is publicly accessible 1.

We choose R as the programming language as it is a popular choice for statistical and data
analysis. Furthermore, many tools used for reading and processing the results of microarray
experiments are written in R, for example the packages by Bioconductor 2.

Our implementation of the algorithms is done in C++ for maximum efficiency. The
implementation reflects the descriptions in Chapter 3. The R package itself consists mostly
of wrapper methods.

As for dependencies of the package, NTL 3 is required fast multiplication of large poly-
nomials and GMP 4 is required for arithmetic on big integers.

5.1.1 Existing implementations

To our knowledge, the only other implementation focusing on weighted voting games is
by Uno [24], it is open source and publicly accessible 5.

Also Alejandro Saavedra-Nieves has published an R package called GameTheoryAllocation 6

that among other things can compute the Shapley value of coalitional games. It requires as
the input an explicit statement of profit of all possible coalitions, therefore it is not suitable
for large games.

1<https://github.com/kristja6/VotingGames>
2<https://bioconductor.org/packages/release/bioc/>
3Can be found on <https://www.shoup.net/ntl/>. Many Linux distributions include NTL in their

default repositories as libntl-dev.
4Can be found on <https://gmplib.org/>. Usually a part of repositories as libgmp-dev
5<http://research.nii.ac.jp/~uno/code/powic.html>
6<https://cran.r-project.org/web/packages/GameTheoryAllocation/index.html>
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5.1.2 Evaluation of performance

For comparison, we use Uno’s own implementation of the algorithm described in [24].
The implementation is open source and can be found on Uno’s website 7. To measure the
performance, we use the real elapsed time and maximum reserved memory as reported by the
Unix utility time. We allow the maximum running time of ten minutes using another Unix
utility timeout. The measurements were performed on a computer with AMD Ryzen 5 3600
and Corsair 16GB DDR4 3466MHz CL16. The resulting time and memory use is the average
taken from 5 distinct runs for each algorithm. The measurements are presented in Table 5.1.

5.1.2.1 Synthetic data

The measurements are done on three different distributions of weights.

• in seqn.in the weights are a sequence of numbers 1 to n and the quota is n

• in normn.in the weights are normally distributed with mean n and variance n/2 and
the quota is 20n.

• in unin.in the weights are uniformly distributed in range 1 to n and the quota is n.

Note that for the larger inputs, the running time and memory usage of our algorithm are
significantly lower than the Uno’s implementation.

5.2 Data sets

All the used data sets are published on the NCBI’s Gene Expression Omnibus (GEO) [35].
Included with the raw data sets is also a so-called series matrix. A series matrix is prepro-
cessed raw data taken from the microarray experiment. Therefore, the processing of the data
is not performed by us, instead it is done by the publisher of the dataset.

Each series matrix file contains log values of expression of each measured DNA strand.
We use the series matrix files as the input of our experiments.

We provide a list of data sets and their GEO Series accession numbers

• Breast cancer [36]: GSE27562

• Lung cancer [37]: GSE18842

• Schizophrenia [38]: GSE53987

• Air pollution [39]: GSE7543. It is also used by Moretti et al. to show the practical
applicability of microarray games [6]

7<http://research.nii.ac.jp/~uno/code/powic.html>
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Table 5.1: Average running times for computing Shapley value of all players over 5 distinct
runs of each algorithm

Input file Our algorithm Uno’s algorithm
time memory time memory

seq100.in 0:00.04s 10.164MB 0:00.01s 3.438MB
seq200.in 0:00.22s 17.95MB 0:00.17s 10.616MB
seq400.in 0:00.97s 33.302MB 0:06.09s 64.056MB
seq800.in 0:05.19s 73.294MB 1:44.52s 506.214MB
seq1600.in 0:28.67s 200.066MB >10:00.00s unknown
seq3200.in 2:56.60s 636.028MB >10:00.00s unknown
seq6400.in >10:00.00s unknown >10:00.00s unknown
uni100.in 0:00.51s 72.18MB 0:00.24s 25.046MB
uni200.in 0:03.24s 268.398MB 0:04.17s 152.74MB
uni400.in 0:30.41s 1062.124MB 1:03.29s 1103.702MB
uni800.in 3:47.18s 3825.712MB >10:00.00s unknown
uni1600.in >10:00.00s unknown >10:00.00s unknown
norm100.in 0:00.28s 58.844MB 0:00.24s 27.118MB
norm200.in 0:01.53s 157.796MB 0:03.60s 164.53MB
norm400.in 0:08.72s 415.412MB 0:59.56s 1200.876MB
norm800.in 1:09.67s 1166.314MB >10:00.00s unknown
norm1600.in 4:54.25s 2885.082MB >10:00.00s unknown
norm3200.in >10:00.00s unknown >10:00.00s unknown
eu_par.in 0:00.02s 11.122MB 0:00.00s 2.918MB
hoc.in 0:00.00s 9.156MB 0:00.00s 2.348MB

npc_congress.in 0:01.22s 130.732MB 0:11.16s 112.246MB

5.3 Definition of the models

On the input, we are given two expression matrices. One for the control group, one for the
diseased group. For each patient, we are given log values of expressions for every measured
DNA strand. Our model consists of a sum of weighted voting games based on those data.
We create a weighted voting game for each diseased sample. Each game contains two players
for each gene: one player representing upregulation of the gene, the other player representing
downregulation of the gene.

The output of such a model will be a power index assigned to each player. If for ex-
ample some player has a high power index, this indicates that the respective gene and its
upregulation/downregulation has high influence on the condition.

We test the practical results of those models by creating regression models using expres-
sions of genes with high power indices.

41



CHAPTER 5. PRACTICAL RESULTS

5.3.1 Method 1

Let µi be the average log expression level of gene i in the control group. Let si be the
estimated standard deviation of the log expression of gene i in the control group. Then for
weighted voting game j, we set the weight of two players i− and i+ as

wj,i+ = max(0, (Xj,i − µi)/si)

wj,i− = min(0, (Xj,i − µi)/si)

where Xj,i is the expression level of gene i in the diseased sample j. The quota for game j
is set as

q = d1
2

n∑
i=1

wj,i+ + wj,i−e

where n is the number of genes

This model can be seen as a generalization of the binary classification method used
by Moretti et al. [6]. In their work, they classify a gene in a given diseased sample as
upregulated when its log expression level is greater than µi + si. Similarly, they classify it
as downregulated when its log expression level is less than µi − si.

5.3.2 Method 2

In the second method, we set the weights as

wj,i+ = max(0, log(Xj,i − µi))

wj,i− = max(0, log(Xj,i − µi))

where Xj,i is the expression level of gene i in the diseased sample j. The quota is set in the
same way as in Method 1.

q = d1
2

n∑
i=1

wj,i+ + wj,i−e

where n is the number of genes

5.3.3 Approximation by lowering the quota

Our methods of setting the weights and quota require a very high value of the quota. This
significantly raises the computation time of our algorithms. We lower the quota a to smaller
fixed value (500), so that the computations are tractable on an average modern computer.
Although this significantly speeds up the runtime of the algorithms, we are given no formal
guarantees about the closeness of our solution. Because the subsequent results are tested
empirically, we do not consider this lack of guarantees a setback.
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5.4 Evaluation of the models

We follow the approach used by Moretti et al. [6]. In their study, they compare their
methods with the results of t-test. The t-test is performed for each gene separately and
the resulting p-value is used as a measure of importance of the gene. In Section 5.5 we
compare how similar are the sets of important genes selected by t-test and by our models.
Subsequently, in Section 5.6 we test models which predict the class of a sample based on
the expression levels of the most important genes. We again compare the models based on
expressions of genes selected by t-test and our methods.

5.5 Genes selected as important

We present graphs showing, for a given value x, how many genes are selected among top
x by both t-test and some other method based on game theory. This value is normalized by
x/100, so that we get a percentage.

Figure 5.1: Breast cancer - overlap of genes selected by t-test and other methods
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Figure 5.2: Lung cancer - overlap of genes selected by t-test and other methods

Figure 5.3: Schizophrenia - prefrontal cortex - overlap of genes selected by t-test and other
methods
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Figure 5.4: Air pollution - overlap of genes selected by t-test and other methods

This shows that Method 2 seems to select significantly different genes than t-test. In the
later section, we will see that the predictive model based on that selection has a comparable
accuracy.

5.6 Class prediction

For our prediction model, we use the standard logistic regression included in R. The model
is created using the expressions of n genes with the highest estimated importance. We use
several methods to select important genes and compare the accuracies of their respective
models. As a baseline, we order genes by the p-value of t-test, performed on each gene
separately. For comparison, we also show efficiency of selecting genes at random.

We test accuracies of logistic regression on log values of gene expressions with the genes
selected by following methods.

• Shapley value of microarray games

• Additive voting games constructed using Method 1

• Additive voting games constructed using Method 2

• T-Test

• Randomly

5.6.1 Measuring the model accuracy

To measure the accuracy of a predictive model, we use leave-one-out cross validation.
That is, for each sample i, we fit the model to all other samples and then let the resulting
model predict the class of i. The resulting accuracy is the fraction of correct predictions out
of all predictions.

45



CHAPTER 5. PRACTICAL RESULTS

5.6.2 Results of experiments

Figure 5.5: Breast cancer - testing accuracy of models

Figure 5.6: Lung cancer - testing accuracy of models
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Figure 5.7: Schizophrenia - associative striatum - testing accuracy of models

Figure 5.8: Schizophrenia - hippocampus - testing accuracy of models
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Figure 5.9: Schizophrenia - prefrontal cortex - testing accuracy of models

Figure 5.10: Air pollution - testing accuracy of models

5.6.3 Conclusion

First, consider the results in section 5.5. Note that Additive voting games with Method
2 selects a substantially different set of genes than other methods (including t-test) as seen
in Figures 5.1, 5.2, 5.3 and 5.4. The effect is most notable in the breast cancer sample,
where the overlap with genes selected by t-test does not exceed 5 percent. This shows that
using the Shapley value of weighted voting games with the weights selected by the Method
2 provides a novel way of selecting important genes. Of course, this depends on the validity
of the selection, which is shown in the next section.

Let us consider the results in Section 5.6.2. In the case of the breast cancer sample, we
can see that Additive voting games with Method 1 achieves 95% testing accuracy with a very
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low number of samples, as seen in Figure 5.5. In the lung cancer sample, Additive voting
games with Method 2 achieves 100% testing accuracy with the lowest number of genes as
seen in Figure 5.6. This makes it the most desirable predictive model out of those tested.
Models using lower number of predictors are easier to interpret and are usually more robust
in practice (less prone to overfitting).

In the case of the sample taken from the prefrontal cortex of schizophrenia patients, we
still achieve very interesting results. The Voting 2 model has lower accuracy than other
models, but it is still quite high as seen in Figure 5.7. Most importantly, it does so using a
very different selection of genes, as seen in Figure 5.3.

Overall, our experiments show that our models provide a very useful as well as novel
measure of relevance of genes.
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Chapter 6

Conclusion

6.1 Future work

Weighted voting games constructed from gene expression data present a reasonable model
of behaviour governed by the expression of genes. In this thesis, we focus on using power
indices as indications of important genes. It would be interesting to use other parameters
of weighted voting games to derive additional information. For example interaction indices
as defined by Grabisch et al. [16] might reveal some information about interactions between
genes.

51



CHAPTER 6. CONCLUSION

52



Bibliography

[1] Debnath, M.; Prasad, G.; et al. Microarray. 10 2010, ISBN 9789048132604, pp. 193–208,
doi:10.1007/978-90-481-3261-4_13.

[2] Behzadi, P.; Ranjbar, R. DNA microarray technology and bioinformatic web ser-
vices. Acta Microbiologica et Immunologica Hungarica AMicr, volume 66, no. 1, 2019:
pp. 19 – 30. Available from: <https://akjournals.com/view/journals/030/66/1/
article-p19.xml>

[3] Li, S.; Teng, S.; et al. Microarray is an efficient tool for circRNA profiling. Briefings in
Bioinformatics, volume 20, no. 4, 02 2018: pp. 1420–1433, ISSN 1477-4054, doi:10.1093/
bib/bby006, <https://academic.oup.com/bib/article-pdf/20/4/1420/30119674/
bby006.pdf>. Available from: <https://doi.org/10.1093/bib/bby006>

[4] Wang, Z.; Gerstein, M.; et al. RNA-Seq: a revolutionary tool for transcriptomics. Na-
ture reviews. Genetics, volume 10, no. 1, Jan 2009: pp. 57–63, ISSN 1471-0064, doi:
10.1038/nrg2484, 19015660[pmid]. Available from: <https://pubmed.ncbi.nlm.nih.
gov/19015660>

[5] Moretti, S.; Patrone, F.; et al. The class of microarray games and the relevance index
for genes. Top, 12 2007.

[6] Merlo, D.; Gmuender, H.; et al. Combining Shapley value and statistics to the analy-
sis of gene expression data in children exposed to air pollution. BMC Bioinformatics,
volume 9, 09 2008, doi:10.1186/1471-2105-9-361.

[7] Lucchetti, R.; Moretti, S.; et al. The Shapley and Banzhaf values in microarray games.
Computers & Operations Research, volume 37, no. 8, 2010: pp. 1406 – 1412, ISSN
0305-0548, doi:https://doi.org/10.1016/j.cor.2009.02.020, operations Research and Data
Mining in Biological Systems. Available from: <http://www.sciencedirect.com/
science/article/pii/S0305054809000604>

[8] Moretti, S. Statistical analysis of the Shapley value for microarray games. Computers &
Operations Research, volume 37, no. 8, 2010: pp. 1413 – 1418, ISSN 0305-0548, doi:https:
//doi.org/10.1016/j.cor.2009.02.016, operations Research and Data Mining in Biological
Systems. Available from: <http://www.sciencedirect.com/science/article/pii/
S0305054809000598>

[9] Gillies, D. B. Solutions to general non-zero-sum games. Contributions to the Theory of
Games, volume 4, 1959: pp. 47–85.

53

https://akjournals.com/view/journals/030/66/1/article-p19.xml
https://akjournals.com/view/journals/030/66/1/article-p19.xml
https://academic.oup.com/bib/article-pdf/20/4/1420/30119674/bby006.pdf
https://academic.oup.com/bib/article-pdf/20/4/1420/30119674/bby006.pdf
https://doi.org/10.1093/bib/bby006
https://pubmed.ncbi.nlm.nih.gov/19015660
https://pubmed.ncbi.nlm.nih.gov/19015660
http://www.sciencedirect.com/science/article/pii/S0305054809000604
http://www.sciencedirect.com/science/article/pii/S0305054809000604
http://www.sciencedirect.com/science/article/pii/S0305054809000598
http://www.sciencedirect.com/science/article/pii/S0305054809000598


BIBLIOGRAPHY

[10] Shapley, L. S. Notes on the n-Person Game—II: The Value of an n-Person Game. Re-
search Memoranda, 1951.

[11] The Prize in Economic Sciences 2012. 2012. Available from: <https://www.
nobelprize.org/prizes/economic-sciences/2012/press-release/>

[12] Shapley, L. S. A value for n-person games. Contributions to the Theory of Games,
volume 2, no. 28, 1953: pp. 307–317.

[13] Shapley, L. S.; Shubik, M. A Method for Evaluating the Distribution of Power in a
Committee System. The American Political Science Review, volume 48, no. 3, 1954: pp.
787–792, ISSN 00030554, 15375943. Available from: <http://www.jstor.org/stable/
1951053>

[14] Penrose, L. S. The Elementary Statistics of Majority Voting. Journal of the Royal Sta-
tistical Society, volume 109, no. 1, 1946: pp. 53–57, ISSN 09528385. Available from:
<http://www.jstor.org/stable/2981392>

[15] Banzhaf III, J. F. Weighted voting doesn’t work: A mathematical analysis. Rutgers L.
Rev., volume 19, 1964: p. 317.

[16] Grabisch, M.; Roubens, M. An Axiomatic Approach to the Concept of Interaction
among Players in Cooperative Games. International Journal of Game Theory, vol-
ume 28, 11 1999: pp. 547–565, doi:10.1007/s001820050125.

[17] Tomomi, M.; Yasuko, M. A Survey of Algorithms for Calculating Power Indices of
Weighted Majority Games. Journal of the Operations Research Society of Japan, vol-
ume 43, 03 2000, doi:10.1016/S0453-4514(00)88752-9.

[18] Klinz, B.; Woeginger, G. J. Faster algorithms for computing power indices in weighted
voting games. Mathematical Social Sciences, volume 49, no. 1, 2005: pp. 111 – 116,
ISSN 0165-4896, doi:https://doi.org/10.1016/j.mathsocsci.2004.06.002. Available from:
<http://www.sciencedirect.com/science/article/pii/S016548960400068X>

[19] Owen, G. Game theory: 4th Edition. 2013.

[20] Castro, J.; Gómez, D.; et al. Polynomial calculation of the Shapley value based
on sampling. Computers & Operations Research, volume 36, no. 5, 2009: pp.
1726 – 1730, ISSN 0305-0548, doi:https://doi.org/10.1016/j.cor.2008.04.004, selected
papers presented at the Tenth International Symposium on Locational Decisions
(ISOLDE X). Available from: <http://www.sciencedirect.com/science/article/
pii/S0305054808000804>

[21] Fatima, S. S.; Wooldridge, M.; et al. A Randomized Method for the Shapley Value for the
Voting Game. In Proceedings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’07, New York, NY, USA: Association
for Computing Machinery, 2007, ISBN 9788190426275, doi:10.1145/1329125.1329316.
Available from: <https://doi.org/10.1145/1329125.1329316>

54

https://www.nobelprize.org/prizes/economic-sciences/2012/press-release/
https://www.nobelprize.org/prizes/economic-sciences/2012/press-release/
http://www.jstor.org/stable/1951053
http://www.jstor.org/stable/1951053
http://www.jstor.org/stable/2981392
http://www.sciencedirect.com/science/article/pii/S016548960400068X
http://www.sciencedirect.com/science/article/pii/S0305054808000804
http://www.sciencedirect.com/science/article/pii/S0305054808000804
https://doi.org/10.1145/1329125.1329316


BIBLIOGRAPHY

[22] Fatima, S. S.; Wooldridge, M.; et al. A linear approximation method for the Shap-
ley value. Artificial Intelligence, volume 172, no. 14, September 2008: pp. 1673–1699.
Available from: <https://eprints.soton.ac.uk/265802/>

[23] Aziz, H.; Paterson, M. Computing voting power in easy weighted voting games. CoRR,
volume abs/0811.2497, 2008, <0811.2497>. Available from: <http://arxiv.org/abs/
0811.2497>

[24] Uno, T. Efficient Computation of Power Indices for Weighted Majority Games. In Al-
gorithms and Computation, edited by K.-M. Chao; T.-s. Hsu; D.-T. Lee, Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, ISBN 978-3-642-35261-4, pp. 679–689.

[25] Bilbao, J. M.; Fernández, J. R.; et al. Generating functions for computing power indices
efficiently. Top, volume 8, no. 2, Dec 2000: pp. 191–213, ISSN 1863-8279, doi:10.1007/
BF02628555. Available from: <https://doi.org/10.1007/BF02628555>

[26] Bolus, S. Power indices of simple games and vector-weighted majority games by
means of binary decision diagrams. European Journal of Operational Research, volume
210, no. 2, 2011: pp. 258 – 272, ISSN 0377-2217, doi:https://doi.org/10.1016/j.ejor.
2010.09.020. Available from: <http://www.sciencedirect.com/science/article/
pii/S0377221710006181>

[27] Chakravarty, N.; Goel, A. M.; et al. Easy weighted majority games. Mathematical Social
Sciences, volume 40, no. 2, 2000: pp. 227 – 235, ISSN 0165-4896, doi:https://doi.org/
10.1016/S0165-4896(99)00050-5. Available from: <http://www.sciencedirect.com/
science/article/pii/S0165489699000505>

[28] Mareš, M.; Valla, T. Průvodce labyrintem algoritmů. CZ.NIC, z.s.p.o., 2017, ISBN
9788088168195. Available from: <http://pruvodce.ucw.cz/>

[29] Schönhage, A.; Strassen, V. Schnelle Multiplikation großer Zahlen. Computing, vol-
ume 7, no. 3, Sep 1971: pp. 281–292, ISSN 1436-5057, doi:10.1007/BF02242355. Avail-
able from: <https://doi.org/10.1007/BF02242355>

[30] Roche, D. S. Space-and time-efficient polynomial multiplication. In Proceedings of the
2009 international symposium on Symbolic and algebraic computation, 2009, pp. 295–
302.

[31] Lucas, W. F. Measuring Power in Weighted Voting Systems. New York,
NY: Springer New York, 1983, ISBN 978-1-4612-5430-0, pp. 183–238, doi:
10.1007/978-1-4612-5430-0_9. Available from: <https://doi.org/10.1007/
978-1-4612-5430-0_9>

[32] Naghizadeh, M.; Sacchi, M. Multidimensional convolution via a 1D convolution algo-
rithm. The Leading Edge, volume 28, 11 2009: pp. 1336–1337, doi:10.1190/1.3259611.

[33] Downey, R. G.; Fellows, M. R. Fixed-parameter tractability and completeness
II: On completeness for W[1]. Theoretical Computer Science, volume 141, no. 1,
1995: pp. 109 – 131, ISSN 0304-3975, doi:https://doi.org/10.1016/0304-3975(94)
00097-3. Available from: <http://www.sciencedirect.com/science/article/pii/
0304397594000973>

55

https://eprints.soton.ac.uk/265802/
0811.2497
http://arxiv.org/abs/0811.2497
http://arxiv.org/abs/0811.2497
https://doi.org/10.1007/BF02628555
http://www.sciencedirect.com/science/article/pii/S0377221710006181
http://www.sciencedirect.com/science/article/pii/S0377221710006181
http://www.sciencedirect.com/science/article/pii/S0165489699000505
http://www.sciencedirect.com/science/article/pii/S0165489699000505
http://pruvodce.ucw.cz/
https://doi.org/10.1007/BF02242355
https://doi.org/10.1007/978-1-4612-5430-0_9
https://doi.org/10.1007/978-1-4612-5430-0_9
http://www.sciencedirect.com/science/article/pii/0304397594000973
http://www.sciencedirect.com/science/article/pii/0304397594000973


BIBLIOGRAPHY

[34] Cygan, M.; Fomin, F. V.; et al. Parameterized algorithms, volume 4. Springer, 2015,
421 to 424 pp.

[35] Barrett, T.; Wilhite, S. E.; et al. NCBI GEO: archive for functional genomics data
sets–update. Nucleic acids research, volume 41, no. Database issue, Jan 2013: pp.
D991–D995, ISSN 1362-4962, doi:10.1093/nar/gks1193, 23193258[pmid]. Available from:
<https://pubmed.ncbi.nlm.nih.gov/23193258>

[36] LaBreche, H. G.; Nevins, J. R.; et al. Integrating Factor Analysis and a Trans-
genic Mouse Model to Reveal a Peripheral Blood Predictor of Breast Tumors. BMC
Medical Genomics, volume 4, no. 1, Jul 2011: p. 61, ISSN 1755-8794, doi:10.1186/
1755-8794-4-61. Available from: <https://doi.org/10.1186/1755-8794-4-61>

[37] Sanchez-Palencia, A.; Gomez-Morales, M.; et al. Gene expression profiling re-
veals novel biomarkers in nonsmall cell lung cancer. International Journal of Can-
cer, volume 129, no. 2, 2011: pp. 355–364, doi:10.1002/ijc.25704, <https://
onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.25704>. Available from: <https:
//onlinelibrary.wiley.com/doi/abs/10.1002/ijc.25704>

[38] Lanz, T. A.; Reinhart, V.; et al. Postmortem transcriptional profiling reveals widespread
increase in inflammation in schizophrenia: a comparison of prefrontal cortex, striatum,
and hippocampus among matched tetrads of controls with subjects diagnosed with
schizophrenia, bipolar or major depressive disorder. Translational Psychiatry, volume 9,
no. 1, May 2019: p. 151, ISSN 2158-3188, doi:10.1038/s41398-019-0492-8. Available
from: <https://doi.org/10.1038/s41398-019-0492-8>

[39] Leeuwen, D.; Herwijnen, M.; et al. Genome-wide differential gene expression in children
exposed to air pollution in the Czech Republic. Mutation research, volume 600, 09 2006:
pp. 12–22, doi:10.1016/j.mrfmmm.2006.05.032.

56

https://pubmed.ncbi.nlm.nih.gov/23193258
https://doi.org/10.1186/1755-8794-4-61
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.25704
https://onlinelibrary.wiley.com/doi/pdf/10.1002/ijc.25704
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.25704
https://onlinelibrary.wiley.com/doi/abs/10.1002/ijc.25704
https://doi.org/10.1038/s41398-019-0492-8

	Introduction
	Game theory
	Microarray analysis
	Original results of the thesis
	Outline of the thesis

	Introduction to coalitional games
	Solution concepts
	The core
	Shapley value

	Voting games
	Power indices
	Shapley-Shubik power index
	Banzhaf index

	Examples

	Weighted voting games
	Survey of existing algorithms for computing power indices
	Models of computation
	RAM
	LogRAM

	Complexities of existing algorithms

	Additional notation
	Preliminaries
	Bounds on complexity of dynamic programming methods
	Lower bounds on complexity of previously described methods
	Computing the power index of a single player
	Banzhaf index
	Shapley index

	Computing power indices of all players
	Banzhaf index
	Shapley value
	Possible optimizations


	Coalitional games and computational biology
	Microarray games
	Construction based on microarray experiments
	Computing power indices
	Hardness of finding small strong coalitions

	Additive voting games
	A generalization of microarray games
	Computing power indices


	Practical results
	The package implementation
	Existing implementations
	Evaluation of performance
	Synthetic data


	Data sets
	Definition of the models
	Method 1
	Method 2
	Approximation by lowering the quota

	Evaluation of the models
	Genes selected as important
	Class prediction
	Measuring the model accuracy
	Results of experiments
	Conclusion


	Conclusion
	Future work


